Two-phase Flow Simulation of Mist Film Cooling with Different Wall Heating Conditions

نویسندگان

  • Xianchang Li
  • Ting Wang
چکیده

Effective cooling of gas turbine combustor liners, combustor transition pieces, turbine vanes (nozzles) and blades (buckets) is a critical task to protect these components from the flue gas at extremely high temperature. Air film cooling has been successfully used to cool these hot sections for the last half century. However, the net benefits from the traditional methods seem to be marginally incremental, but the temperature of working gas is continuously increasing to achieve a high thermal efficiency. Therefore, new cooling techniques need to be developed. One of the promising techniques is to enhance film cooling with mist injection. While the previous study reported the effect of mist on the cooling effectiveness with an adiabatic wall, this paper focuses on the effect of mist injection on heat transfer of film cooling with a non-adiabatic flat wall, using commercial CFD software package Fluent. Both 2-D and 3-D cases are considered with a 2-D slot and diffusive compound angle holes. Modellings of interaction of droplet with uniformly cooled wall as well as conjugate heat conduction inside the solid base are conducted. Different mist droplet sizes and mist concentrations are adopted. Both conditions at a gas turbine operating environment (15 atm and 1561K) and in the laboratory environment (1 atm and 450K) are considered. Results show that injecting 2~10% mist successfully reduces the heat transfer coefficient and the wall temperature. Especially, mist has the prolonged effect of cooling the region downstream of 15 jet hole diameters, where the conventional air film cooling is not effective.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CFD Model Validation and Prediction of Mist/Steam Cooling in a 180-Degree Bend Tubes

To achieve higher efficiency target of the advanced turbine systems, the closed-loop steam cooling scheme is employed to cool the airfoil. It is proven from the experimental results at laboratory working conditions that injecting mist into steam can significantly augment the heat transfer in the turbine blades with several fundamental studies. The mist cooling technique has to be tested at gas ...

متن کامل

Simulation of Mist Film Cooling at Gas Turbine Operating Conditions

Air film cooling has been successfully used to cool gas turbine hot sections for the last half century. A promising technology is proposed to enhance air film cooling with water mist injection. Numerical simulations have shown that injecting a small amount of water droplets into the cooling air improves film-cooling performance significantly. However, previous studies were conducted at conditio...

متن کامل

Effects of Various Modeling Schemes on Mist Film Cooling Simulation

Numerical simulation is performed in this study to explore filmcooling enhancement by injecting mist into the cooling air with a focus on investigating the effect of various modeling schemes on the simulation results. The effect of turbulence models, dispersed-phase modeling, inclusion of different forces (Saffman, thermophoresis, and Brownian), trajectory tracking, and mist injection scheme is...

متن کامل

An Experimental Study of Mist / Air Film Cooling On a Flat Plate With Application to Gas

Film cooling is a cooling technique widely used in highperformance gas turbines to protect the turbine airfoils from being damaged by hot flue gases. Motivated by the need to further improve film cooling in terms of both cooling effectiveness and coolant coverage area, the mist/air film cooling scheme is investigated through experiments in this study. A small amount of tiny water droplets (7% w...

متن کامل

An Experimental Study of Mist/Air Film Cooling On a Flat Plate with Application to Gas Turbine Airfoils- Part 2: Two-Phase Flow Measurements and Droplet Dynamics

A Phase Doppler Particle Analyzer (PDPA) system is employed to measure the two-phase mist flow behavior including flow velocity field, droplet size distribution, droplet dynamics, and turbulence characteristics. Based on the droplet measurements made through PDPA, a projected profile describing how the air-mist coolant jet flow spreads and eventually blends into the hot main flow is proposed. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006